

Rhiannon Mayne

Curator, Oscar Monnig Meteorite Collection and Gallery

Oscar and Juanita Monnig
Endowed Chair of Meteoritics and
Planetary Science

Associate Professor, Department of Environmental Sciences

Research Interests

I primarily study the mineral makeup (mineralogy) and geochemistry of asteroidal meteorites, but also incorporate both laboratory-collected spectra, and ground-based telescope data into my research. These datasets allow me to take a multidisciplinary approach to understanding the question of how differentiation progressed in the early Solar System.

The vast majority of meteorites come from the main asteroid belt that lies between Mars and Jupiter. Unlike the Earth and the other rocky planets (Mercury, Venus, and Mars), the asteroids, and the meteorites that derive from them, have not undergone significant reprocessing since their formation and they record the conditions and processes, such as differentiation, that were taking place in the early Solar System.

Monnig Meteorite Collection and Gallery TCU Box 298835 Fort Worth, TX, 76109

Phone: 817-257-4172 Email: r.g.mayne@tcu.edu

Professional Experience

2018 -	Associate Professor, Environmental Sciences Texas Christian University Fort Worth, TX
2016 - 2018	Associate Professor, Geology Texas Christian University Fort Worth, TX
2009 - 2016	Assistant Professor, Geology Texas Christian University Fort Worth, TX
2008 - 2009	Smithsonian Postdoctoral Fellow National Museum of Natural History, Washington, DC

Education

2019 -	Informal Learning in Museums Professional Certificate Oregon State University
2002 - 2008	Ph.D. Geology University of Tennessee, Knoxville
1998 - 2002	B.Sc. Hons. Geology Edinburgh University

Courses Taught

GEOL 10113	Understanding the Earth
ENSC 20003	Astrobiology: Hunting for Habitable Worlds
GEOL/PHYS 30163	Evolution and Exploration of the Solar System
GEOL/PHYS 50813	Meteorites, Asteroids, and Planets
UNLF 10211	Introduction to University Life
GEOL 40970/70970 ENSC 40970/70970	Independent Studies on topics such as curation, meteorite petrology, and public outreach. Research projects for both undergraduate and graduate students.

Selected Publications

Mayne, R. G., Corrigan, C. M., McCoy, T. J., Day, J. M. D., & Rose, T. R. (Accepted). Qarabawi's Camel Charm: Tracing the meteoritic origins of a cultural artifact. *Meteoritics and Planetary Science*.

Crossley, S. D., Lunning, N. G., Mayne, R. G. *et al.* (2018). Experimental insights into Stannern-trend eucrite petrogenesis. *Meteoritics & Planetary Science*, *53*(10), 2122–2137.

Mayne, R. G. (2016). Qarabawi's charm: Looking beyond the science. *Elements*, 12(1), 73–74.

Mayne, R. G., Smith, S. E., & Corrigan, C. M. (2016). Hiding in the howardites: Unequilibrated eucrite clasts as a guide to the formation of Vesta's crust. *Meteoritics & Planetary Science*, *51*(12), 2387–2402.